过去几年中,受益于生物学、电子技术和人类遗传学领域空前的发展,科学家开发出了一系列新设备,用以保护和改善人类健康。先进的医疗技术和复杂的数据分析手段,正在打破这些领域的传统局限,从医院和实验室走进人们的日常生活。
前不论是通过医生,还是在网上购买的全基因组测序结果都没有实际的医学价值。主要问题是,这项技术发展得太快,研究人员对测序结果的解读能力没有跟上。例如,每个人的基因测序结果都必须与大量的其他人的测序结果进行比较,这样医生才能知道哪些是重要的疾病指标,哪些则可以忽视。另外,许多疾病是由一些罕见突变造成的,而科学家还没有鉴别出这些突变。到目前为止,受益于全基因测序的那一小部分病人,大多具有罕见而明显的基因突变。这对于我们其他人有什么样的意义呢?我们拭目以待。
芬兰人特霍患有色素性视网膜炎,这种遗传病破坏了视网膜上的感光细胞,进入中年后不久,他就完全失去了视力。几年前,德国图宾根大学的研究人员将一块芯片植入特霍的视网膜。这块芯片替代了视网膜损坏的感光细胞(即视杆细胞和视锥细胞)。芯片上有1500个小方块,每个小方块都含有一个光电二极管、放大器和电极。当光线照在一个光电二极管上时,就会产生微弱的电流,经过放大器增强后,传送到电极上,刺激附近的双极细胞产生信号,再通过视神经传送到大脑。照射在光电二极管上的光线越多,产生的电流就越强。
植入视网膜的芯片为特霍打开了一扇面向世界的窗户,让他可以看见约1米外一张A4打印纸大小的范围。通过这扇窗户,特霍可以分辨出人和物体的基本外形和轮廓,尤其是在明暗反差强烈的时候。这戏剧性地改变了特霍与这个世界互动的方式。他10年来第一次能够看见和辨认一些物体,比如餐具和水果,读出大字体印刷的字母,认出自己的亲人。
此后,研究人员不断进步,让植入芯片变得更安全和轻便。最新的芯片是无线的,到目前为止已经移植到了10个人的眼睛内。病人还可以自行调节视野的亮度和对比度。